Segmentation using a region-growing thresholding

نویسندگان

  • Matei Mancas
  • Bernard Gosselin
  • Benoit M. Macq
چکیده

Our research deals with a semi-automatic region-growing segmentation technique. This method only needs one seed inside the region of interest (ROI). We applied it for spinal cord segmentation but it also shows results for parotid glands or even tumors. Moreover, it seems to be a general segmentation method as it could be applied in other computer vision domains then medical imaging. We use both the thresholding simplicity and the spatial information. The gray-scale and spatial distances from the seed to all the other pixels are computed. By normalizing and subtracting to 1 we obtain the probability for a pixel to belong to the same region as the seed. We will explain the algorithm and show some preliminary results which are encouraging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...

متن کامل

Unsupervised color image segmentation using a dynamic color gradient thresholding algorithm

We propose a novel algorithm for unsupervised segmentation of color images. The proposed approach utilizes a dynamic color gradient thresholding scheme that guides the region growing process. Given a color image, a weighted vectorbased color gradient map is generated. Seeds are identified and a dynamic threshold is then used to perform reliable growing of regions on the weighted gradient map. O...

متن کامل

A Robust system for Segmentation of primary Liver Tumor in CT images pdfkeywords=Adaptive Thresholding, Mathematical Morphology, Global Thresholding, Region Growing, Fuzzy C Mean Clustering

The liver is a vital organ in human body, and Liver Tumor is considered to be a fatal disease. The tumors which can occur in Liver are cancerous or non-cancerous. For diagnosis of tumor, detection and demarcation of tumor is the initial step to be performed. After detection of the tumor, its type can be determined by using technique like biopsy, which is an invasive technique. To avoid such an ...

متن کامل

Histogram and Watershed Based Segmentation of Color Images

A novel method for color image segmentation is proposed in this paper. The method is based on the segmentation of each color plane independently using a watershed based thresholding of the plane histograms. The segmentation maps obtained for each color plane are fused together according to a fusion operator taking into account a concordance of the labels of each segmentation map. This operator ...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

A Study On Image Segmentation Techniques

Abstract—Image segmentation is very important step of image analysis which is used to partitioned image into several homogenous regions by classifying pixels of whole image into different regions that exhibit similar characters. The result of image segmentation is a set of sections that together cover the whole image. This paper has presented a review on various image segmentations techniques l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006